Year 11 Unit 1 - Off the straight and narrow Investigating pattern

Calculate the following:

$$(24 \times 22) - (33 \times 13)$$

$$(24+22)+(33+13)$$

$$(33-13)-(24-22)$$

Investigate what happens to these calculations as the cross moves around the grid.

Write down any rules that you find, and explain why they work.

The crosses investigated above were 1-arm crosses.

Shown opposite is a 2-arm cross.

Investigate for Cross Numbers of different sizes, and state any limitations of your rule(s).

Criterion B: Investigating Patterns

Level	Descriptor
0	I do not reach a standard described by any of the descriptors given below.
1-2	I apply, with some guidance, mathematical problem-solving techniques to recognize simple patterns.
3-4	I select and apply mathematical problem-solving techniques to recognize patterns, and suggest relationships or general rules.
5-6	I select and apply mathematical problem-solving techniques to recognize patterns, describe them as relationships or general rules, and draw conclusions consistent with my findings.
7-8	I select and apply mathematical problem-solving techniques to recognize patterns, describe them as relationships or general rules, draw conclusions consistent with my findings, and provide justifications or proofs.

Year 11 Unit 1 - Off the straight and narrow Investigating pattern

Cross numbers

Shown below is a number square which contains the numbers 1 to 100:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

We can form **Cross Numbers** by placing a cross on top of this grid.

We could use a cross like the one shown opposite:

Here is one example:

1	2	3	4	5
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35
41	42	43	44	45

Year 11 Unit 1 - Off the Straight and narrow. Criterion B - Investigating Patterns

Our task for this investigation is to find any rules to the value of the numbers inside the cross placed on a 1 to 100 grid.

Example 1 -

Calculations:

$$(22 \times 24) - (13 \times 33) = 99$$

 $(24 + 22) + (13 + 33) = 92$
 $(33 - 13) - (24 - 22) = 18$

Example 2 - using a different set of numbers

$$(14 \times 16) - (5 \times 25) = 99$$

 $(14 + 16) + (5 + 25) = 60$
 $(25 - 5) - (16 - 14) = 18$

Example 3-

$$(48 \times 50) - (39 \times 59) = 99$$

 $(48 + 50) + (39 + 59) = 196$
 $(59 - 39) - (50 - 48) = 18$

Results.	Middle number	Equation 1	Equation 2	[Equation 3
Example 1	23	99	92	18
Example 2	15	99	60	18
Example 3	49	99	196	18

From the results above, 1 see that the answers for equation 1 all result in 99, equation 2 results to 4x (let the centre number of the cross be x) and equation 3 results to 18. From this, 1 can predict 3 rule that would work for which ever number.

a)
$$(x-1)(x+1) - (x-10)(x+10) = (x^2-1)-(x^2-100) = 99$$

b) $[x+1)+(x-1)] + [(x+10)+(x-10)] = 4x$

c) [(x+10)-(x-10)] - [(x+1)-(x-1)] Generated by CamScanner

x-10 x-1 x x+1 x+10

Rule A

Why does these rules work?

Rule A $[(x^2-1^2)-(x^2-10^2)]$ works for any number as it is the same number on both side of the equation ho matter what number x represents. Hence, it does not break the ratio and the balance of the equation and it would result to 99. It uses the quadratic law $(a+b)(a-b)=(a^2-b^2)$. Rule B [(x-i)+(x+1)+(x-10)+(x+10)] also works to result into 4x as the result is proportional to whichever number x represents

Rule C[(x+10)-(x-10)]-[(x+1)-(x-1)] always results to 18 as X is the same value on both sides.

Trying with a different size cross.

Example 4.

$$(21 \times 25) - (3 \times 43) = 396$$

$$(43-3)-(25-21)=36$$

$$(23 \times 27) - (5 \times 45) = 396$$

$$(23+27)+(5+45)=100$$

 $(45-5)-(27-23)=36$

$$(76 + 80) - (58 + 98) = 312$$

 $(98 - 58) - (80 - 76) = 36$

final rules.

From my 2 experiment above, I can conclude these rules. Let a be the $(x)(x^2 - number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number <math>(x^2 + number of boxes away from the centre number)$

= $[(x-a)(x+a)]^2 - [(x-10a)(Generated by CamScanner.$

Rule B) $\left[(x-a) + (x+a) + (x-10a) + (x+10a) \right] = x = centre$ sumbre.

c) $\left[(x+10a) - (x-10a) \right] - \left[(x+a) - (x-a) \right] = a = number of a$

c) [(x+10a)-(x-10a)]-[(x+a)-(x-a)] a = number of boxes away from the but there are limitation to it.

If any of the x values used in the centre of the cross would result in a negative value at any part of the equations, the equation would become ineffective.

final relationship between crosses .

Leo cross	equation 1	equation 2	equation 3
Teg cross	99	42	13
2 leg cross	396	42	36
3 leg cross	४९।	42	54
a leg cross	99a	47(189

Justification

- · Work on it with another cross . (e.g. 4 leg cross)
- · First predict the answer with the equation above A
- · The recalculate from the three equations to prove your answer

- State limitations

· Only works if a is less then 5 as the cross would not fit on the 1-100 grid